Halacha

הלכה א
שְׁנַּת הַחַמָּה לְמִי שֶׁהוּא אוֹמֵר שֶׁהִיא פָּחוֹת מֵרְבִיעַ מֵחַכְמֵי יִשְׂרָאֵל. יֵשׁ מִי שֶׁאוֹמֵר שס''ה יוֹם וְחָמֵשׁ שָׁעוֹת וְתתקצ''ז חֲלָקִים וּמ''ח רֶגַע. וְהָרֶגַע אֶחָד מֵע''ו בְּחֵלֶק. וּלְפִי חֶשְׁבּוֹן זֶה תִּהְיֶה תּוֹסֶפֶת שְׁנַת הַחַמָּה עַל שְׁנַת הַלְּבָנָה י' יָמִים וְכ''א שָׁעָה וְקכ''א חֵלֶק וּמ''ח רֶגַע. סִימָן לָהֶן יכ''א קכ''א מ''ח. וְלֹא תִּמְצָא תּוֹסֶפֶת בְּמַחֲזוֹר שֶׁל י''ט שָׁנָה כְּלָל אֶלָּא בְּכָל מַחֲזוֹר מֵהֶם יִשְׁלְמוּ שְׁנֵי הַחַמָּה עִם שְׁנֵי הַלְּבָנָה הַפְּשׁוּטוֹת וְהַמְעֵבָּרוֹת:
כסף משנה
1.
According to the opinion among the Sages of Israel that a solar year is less than [365 and] one-quarter [days], there is a view that [the length of the solar year] is 365 days, 5 hours, 997 units, and 48 moments. A moment is a seventy-sixth portion of a unit.
According to this reckoning, the difference between a solar year and a lunar year will be 10 days, 21 hours, 121 units, and 48 moments (in numbers, 10 - 21 - 121 - 48). [According to this calculation,] there will be no remainder at all after a [nineteen-year] cycle. Instead, after every [nineteen-year] cycle, a perfect correspondence will be established between the solar years and the combination of ordinary and full lunar years.

הלכה ב
בֵּין כָּל תְּקוּפָה וּתְקוּפָה לְפִי חֶשְׁבּוֹן זֶה צ''א יוֹם וְז' שָׁעוֹת וְתקי''ט חֲלָקִים וְל''א רֶגַע. סִימָן לָהֶם צ''א ת''ק י''ט ל''א. וּכְשֶׁתֵּדַע תְּקוּפָה מִן הַתְּקוּפוֹת אֵימָתַי הָיְתָה. תַּחְשֹׁב מֵאוֹתוֹ רֶגַע מִנְיָן זֶה וְתֵדַע תְּקוּפָה שֶׁאַחֲרֶיהָ עַל הַדֶּרֶךְ שֶׁבֵּאַרְנוּ בִּתְקוּפַת הַשָּׁנָה שֶׁהִיא רְבִיעַ:
כסף משנה
2.
According to this calculation, there are ninety-one days, seven hours, 519 units, and thirty-one moments (in numbers, 91 - 7 - 519 - 31). When you know the date and the time of the beginning of any particular season, you can calculate [the date and the time of the beginning of] the subsequent season according to the seasons of the year, in a way resembling the calculations [that follow the opinion that a solar year is 365 and] 1/4 days.

הלכה ג
תְּקוּפַת נִיסָן לְפִי חֶשְׁבּוֹן זֶה הָיְתָה בְּשָׁנָה רִאשׁוֹנָה שֶׁל יְצִירָה קֹדֶם מוֹלַד נִיסָן בְּט' שָׁעוֹת וְתרמ''ב חֲלָקִים. סִימָן לָהֶם ט' תרמ''ב. וְכֵן הִיא לְעוֹלָם בְּכָל שָׁנָה רִאשׁוֹנָה שֶׁל כָּל מַחֲזוֹר קֹדֶם מוֹלַד נִיסָן בְּתֵשַׁע שָׁעוֹת וְתרמ''ב חֲלָקִים:
כסף משנה
3.
According to this calculation, the vernal equinox of the first year of creation was nine hours and 642 units1This differs from the figure given in Chapter 9, Halachah 3. The reason for this difference is that Rav Ada's calculations (the figures mentioned in this chapter) follow Rabbi Yehoshua's view, which maintains that the world was created in Nisan. In contrast, Shemuel's calculations (those mentioned in Chapter 9) depend more on the view of Rabbi Eliezer, who maintains that the world was created in Tishrei. (in numbers, 9 - 642) before the conjunction of the month of Nisan. Similarly, in every first year of a [nineteen-year] cycle, the vernal equinox is nine hours and 642 units before the conjunction of the month of Nisan.

הלכה ד
כְּשֶׁתֵּדַע תְּקוּפַת נִיסָן שֶׁל שָׁנָה רִאשׁוֹנָה מִן הַמַּחֲזוֹר. תַּחְשֹׁב מִמֶּנָּה צ''א יוֹם וְז' שָׁעוֹת וְתקי''ט חֲלָקִים וְל''א רֶגַע לְכָל תְּקוּפָה וּתְקוּפָה עַד סוֹף הַמַּחֲזוֹר:
כסף משנה
4.
When you know which is the first year of a [nineteen- year] cycle, [you will be able to calculate the beginning of every subsequent season] by adding 91 days, 7 hours, 519 units, and 31 moments for each and every season until the end of the [nineteen- year] cycle.

הלכה ה
אִם תִּרְצֶה לֵידַע מָתַי תִּהְיֶה תְּקוּפַת נִיסָן לְפִי חֶשְׁבּוֹן זֶה. תֵּדַע תְּחִלָּה שָׁנִים גְּמוּרוֹת שֶׁעָבְרוּ מִן הַמַּחֲזוֹר. וְתִקַּח לְכָל שָׁנָה מֵהֶן תּוֹסֶפֶת. וְהִיא יכ''א קכ''א מ''ח. וְקַבֵּץ כָּל הָרְגָעִים חֲלָקִים וְכָל הַחֲלָקִים שָׁעוֹת וְכָל הַשָּׁעוֹת יָמִים כְּדֶרֶךְ שֶׁתַּחְשֹׁב בַּמּוֹלָדוֹת. וְתִגְרַע מִן הַכּל הַט' שָׁעוֹת וְתרמ''ב חֲלָקִים. וְהַנִּשְׁאָר תַּשְׁלִיךְ חָדְשֵׁי לְבָנָה. וְהַנִּשְׁאָר שֶׁאֵין בּוֹ חֹדֶשׁ לְבָנָה תּוֹסִיף אוֹתוֹ עַל מוֹלַד נִיסָן שֶׁל אוֹתָהּ שָׁנָה. וּבְרֶגַע שֶׁיַּגִּיעַ הַמִּנְיָן בּוֹ תִּהְיֶה תְּקוּפַת נִיסָן שֶׁל אוֹתָהּ שָׁנָה:
כסף משנה
5.
If you desire to know when the vernal equinox [of a given year] will fall according to this calculation, first determine how many complete years have passed within this [nineteen-year] cycle. For each year, add the remainder of a year 10 [days], 21 [hours], 121 [units], and 48 moments.
[Afterwards,] group all the moments as units, all the units as hours, and all the hours as days, as done when calculating the conjunction. Subtract nine hours and 642 units from the entire sum,2So that the calculation will begin from the day of the conjunction of Nisan. and divide the remainder by the length of a lunar month.3Thus accounting for all the leap years that have passed within the nineteen-year cycle. The remainder that is less than the length of a lunar month should be added to the time of the conjunction of Nisan of the year in question. The vernal equinox of that year will take place on the moment arrived at according to these calculations.

הלכה ו
וְנִרְאִין לִי הַדְּבָרִים שֶׁעַל חֶשְׁבּוֹן תְּקוּפָה זוֹ הָיוּ סוֹמְכִין לְעִנְיַן עִבּוּר הַשָּׁנָה בְּעֵת שֶׁבֵּית דִּין הַגָּדוֹל מָצוּי. שֶׁהָיוּ מְעַבְּרִין מִפְּנֵי הַזְּמַן אוֹ מִפְּנֵי הַצֹּרֶךְ. לְפִי שֶׁחֶשְׁבּוֹן זֶה הוּא הָאֱמֶת יוֹתֵר מִן הָרִאשׁוֹן. וְהוּא קָרוֹב מִן הַדְּבָרִים שֶׁנִּתְבָּאֲרוּ בְּאִצְטַגְנִינוּת יוֹתֵר מִן הַחֶשְׁבּוֹן הָרִאשׁוֹן שֶׁהָיְתָה בּוֹ שְׁנַת הַחַמָּה שס''ה יוֹם וּרְבִיעַ יוֹם:
כסף משנה
6.
It appears to me that [the Sages] relied on this calculation [of the length] of the seasons regarding the institution of a leap year, in the era when the High Court held sessions and would institute a leap year because of the time [when the equinox was scheduled to occur] or for other reasons. For this calculation is more accurate than the former one. It shares a greater resemblance to the data explained by the astronomers than the first opinion, which considered a solar year to be 365 and 1/4 days.

הלכה ז
וְחֶשְׁבּוֹן שְׁתֵּי תְּקוּפוֹת הָאֵלּוּ שֶׁבֵּאַרְנוּ דַּרְכָּם הַכּל בְּקֵרוּב הוּא וּבְמַהֲלַךְ הַשֶּׁמֶשׁ הָאֶמְצָעִי לֹא בִּמְקוֹמָהּ הָאֲמִתִּי. אֲבָל בִּמְקוֹם הַשֶּׁמֶשׁ הָאֲמִתִּי תִּהְיֶה תְּקוּפַת נִיסָן בִּזְמַנִּים אֵלּוּ בִּכְמוֹ שְׁנֵי יָמִים קֹדֶם שְׁתֵּי הַתְּקוּפוֹת שֶׁיּוֹצְאִין בְּחֶשְׁבּוֹן זֶה. בֵּין בְּחֶשְׁבּוֹן מִי שֶׁחָשַׁב רְבִיעַ יוֹם גָּמוּר בֵּין לְמִי שֶׁמְּחַשֵּׁב לְפָחוֹת מֵרְבִיעַ יוֹם:
כסף משנה
7.
Both these calculations that we have explained are approximations, based on the mean rate of progress of the sun, and not on its actual position [in the celestial sphere]. When one considers the actual position of the sun at these times, the vernal equinox will take place approximately two days before the time determined by either of these calculations.4As mentioned previously, and as is explained in the subsequent chapters, the mean position or the mean rate of progress of a body in the celestial sphere refers to the average of its monthly or yearly cycle. In actual fact, there are slight inconsistencies between the position of any of these bodies according to these calculations and its actual position as observed in the celestial sphere. Until this point, the Rambam has relied on the mean rate of progress of the celestial bodies for his calculations. In the subsequent chapters, he explains how their exact position in the celestial sphere can be determined. [This applies both] according to the opinion that [a solar year is] exactly [365 and] 1/4 days, and according to the opinion that [a solar year is] less than [365 and] 1/4 days.

זמנים הלכות קידוש החודש פרק י
Zemanim Kiddush HaChodesh Chapter 10